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Abstract

A generic theory of a single real scalar field is considered, and a simple method
is presented for obtaining a class of solutions to the equation of motion. These
solutions are obtained from a simpler equation of motion that is generated by
replacing a set of the original coordinates by a set of generalized coordinates,
which are harmonic functions in the spacetime. These ansatz solutions solve the
original equation of motion on manifolds that are defined by simple constraints.
These manifolds, and their dynamics, are independent of the form of the scalar
potential. Some scalar field solutions, and manifolds upon which they exist,
are presented for Klein–Gordon and quartic potentials as examples. Solutions
existing on leaves of a foliated space may allow inferences of the characteristics
expected of exact bulk solutions.

PACS numbers: 11.27.+d, 11.10.Lm

1. Introduction

Scalar fields play a prominent role in modern physical theories. Scalar potentials with
multiple vacuum states allow for the possible existence of various types of topological and
nontopological solitons, including kinks and domain walls, cosmic strings and magnetic poles
[1, 2]. Scalar field interactions can give rise to networks of defects [3, 4] and nested defects [5],
where one defect may form inside another (host) defect. Solitonic structures associated with
scalar moduli are found in dilatonic and low energy string theories [6]. The many interesting
types of scalar field phenomena serve to motivate the study of various kinds of scalar field
theories and their solutions. Often, attention is focused on a simplified scenario where scalar
fields depend upon only one or two coordinates, and solutions are easier to obtain and analyze
[7]. Solutions to the equations of motion that depend on several variables are generally less
accessible, but may contain a relatively rich structure.

Here, we present a simple ansatz allowing one to map a solution of fewer coordinate
variables to one of the more coordinate variables. These ansatz solutions, however, are subject
to a caveat, in that they solve the equation of motion only on a well-defined manifold, or set
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of manifolds, in the spacetime. The manifold(s) may consist of the entire spacetime, or may
be in the form of hypersurfaces within the spacetime. For a space that is foliated by a set of
surfaces, it seems natural to expect that the set of solutions on the various leaves of the foliation
will give an indication of the mathematical and physical natures of an exact solution solving
the equation of motion in the spacetime bulk. This may provide a way to extract information
about complicated solutions of a scalar field theory that would be otherwise hard to obtain.

We consider a theory of a single real scalar field described by an action

S =
∫

dNx
√

g

[
1

2
∂μφ∂μφ − V (φ)

]
(1.1)

in an N = D + 1-dimensional spacetime with D spatial dimensions and μ = 0, . . . , D. A
mostly negative metric is used with gμν = (+,−,−, . . . ,−) and g = |det gμν |. The metric
gμν(x) is taken to be a nondynamical background field, and, for simplicity, we take fields and
coordinates to be dimensionless. The equation of motion (EoM) is

�φ = ∇μ∂μφ = −∂V

∂φ
= −V ′(φ). (1.2)

This second-order DE can be difficult to solve, especially if there is a complicated potential
V (φ) or a solution is sought where φ depends on more than one or two coordinate variables.
We therefore consider a simplifying ansatz that will generate solutions to the EoM, but the
solutions generated by the ansatz generally exist on some set of manifolds or hypersurfaces.
For some cases, the manifold is the full spacetime. In other cases, a continuous set of
hypersurfaces can foliate the spacetime, or a dynamical set of surfaces may move through the
space. These manifolds can therefore span the spacetime in one way or another and thereby
give some indication of at least, qualitative features that exact ‘bulk’ solutions (which may be
hard to obtain directly) of the EoM may be expected to exhibit. These ansatz solutions form
a subset of the full solution spectrum for the theory.

The ansatz is based on the idea that the function φ(xμ) can depend on the coordinates xμ

through a set of linearly independent functions qα(xμ), where the number of functions qα is
less than or equal to the number of spacetime coordinates xμ. The qα serve as generalized
coordinates, and must satisfy certain constraint conditions in order for φ[qα(xμ)] to satisfy
the original EoM. These constraints, in turn, define some manifold of dimension � N on
which the solutions exist. These constraints are associated with a q-space metric, which
has components that become Minkowski valued on the solution manifold. In addition, the
functions qα must be harmonic in the original spacetime, satisfying � qα(xμ) = 0. For the
case where the qα consists of just one spacelike generalized coordinate, say q1 = ξ(xμ), with
φ = φ[ξ(xμ)], the ansatz considered here reduces to a BPS-like ansatz where the solution
φ(ξ) can be obtained directly from the potential function V (φ). The solution manifolds and
their associated dynamics are independent of the form of the scalar field potential.

In the following sections we present the solution generating ansatz. Some concrete
examples of solutions of scalar field theories, and manifolds on which they exist, are then
presented. These include theories with potentials for massless and massive Klein–Gordon
fields, as well as φ4 theory. We focus on 1D and 2D cases, where φ depends upon only one
or two q functions, respectively. For the 1D case the generalized coordinate can be either
a timelike or a spacelike one. For the 2D case there can be one timelike and one spacelike
function, or two that are spacelike. Static and dynamical solutions are obtained describing
configurations such as Klein–Gordon fields, kinks and domain ribbons on various manifolds.
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2. The ansatz

The purpose of our simplifying ansatz is to obtain solutions to the EoM in (1.2) by considering
φ(xμ) to have a dependence on coordinates xμ only through a set of linearly independent
generalized coordinate functions qα(xμ), i.e., φ(xμ) = φ[qα(xμ)]. The number of generalized
coordinates qα is less than, or equal to, the number of spacetime coordinates xμ. In other
words, the α indices can take any set of the values of the μ indices, where μ = 0, 1, 2, . . . ,D.
We could choose qμ = xμ for some of the coordinates, but we will focus on the case where the
number of qα �= xα is less than the total number of spacetime coordinates {xμ}, and therefore
φ(qα) is a function of M < N generalized coordinates qα(x) �= xα .

Using a notation where differentiation with respect to a q coordinate is denoted by an
overbar, ∂̄α = ∂/∂qα , we write

∂μφ = (∂μqα)∂̄αφ, ∂μφ = (∂μqα)∂̄αφ, ∂̄α ≡ ∂

∂qα
. (2.1)

The term �φ on the left-hand side of (1.2) can be written as

�φ = ∇μ∂μφ = 1√
g

∂μ(
√

g∂μφ) = 1√
g

∂μ[
√

g(∂μqα)∂̄αφ]

= (�qα)∂̄αφ + (∂μqα∂μqβ)∂̄α∂̄βφ. (2.2)

The EoM of (1.2) then takes the form

�φ + V ′(φ) = (� qα)∂̄αφ + (∂μqα∂μqβ)∂̄α∂̄βφ + V ′(φ) = 0. (2.3)

We consider a class of solutions that satisfies the simplified EoM in the q-space,

ηαβ ∂̄α∂̄βφ + V ′(φ) = 0 (2.4)

subject to the conditions

� qα = 0, ∂μqα∂μqβ = ηαβ. (2.5)

The first condition requires qα(xμ) to be a harmonic function, � qα = ∇μ∂μqα = 0, and
the second condition imposes a set of constraints upon the qα . This set of constraints
must be satisfied simultaneously. Each constraint equation can lead to a constraint between
the coordinates xμ, and can therefore define a manifold. The solution manifold M is the
intersection of all of the individual constraint manifolds.

To summarize, we can generate a solution φ(xμ) of the EoM by considering a solution
ϕ(xα) that solves an equation of motion of the form ηαβ∂α∂βϕ + V ′(ϕ) = 0 in a Minkowski
spacetime or Euclidean space, with ϕ depending on a set of coordinates xα that is a subset of the
spacetime coordinates xμ. We then make replacements xα → qα(xμ) and ϕ(xα) → φ[qα(xμ)]
to obtain the q-space equation of motion in (2.4). This function φ(qα) will also be a solution
to the original EoM in (1.2) on the manifold M, provided that the conditions in (2.5) are
satisfied. Each function qα(xμ) is harmonic in the original spacetime, and the constraint
equations ∂μqα∂μqβ = ηαβ define the solution manifold M where all constraints are satisfied
simultaneously. Then the EoM is satisfied on M, i.e.,

{∇μ∂μφ + V ′(φ)}|M = 0. (2.6)

Let us try to look at this in a slightly different way. Suppose that we have a spacetime with
N coordinates xμ and metric gμν(x). We then define N new generalized coordinates qμ(x),
although some of the q’s may be identically equal to some of the x’s; e.g., qm = xm, where {qm}
is a proper subset of {qμ}. We then have nontrivial functions qα(x) for a subset {qα} (α �= m).
Now consider a diffeomorphism that takes xμ → qμ and the metric gμν(x) → ḡμν(q).
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A tensor transformation of the (contravariant) metric is ḡρσ (q) = ∂μqρ∂νq
σ gμν(x). The

constraint equations ∂μqα∂μqβ = ηαβ state that the αβ components of ḡρσ (q)—a subset of
the full set of {ḡρσ }—become Minkowski valued on the solution manifold M. The solution
φ(xμ) to the EoM is mapped into a function φ(qα), which solves a DE (on M) with fewer
(generalized) coordinate variables on a manifold M where some of the metric components
ḡρσ take Minkowski values.

3. Some illustrations

A few concrete illustrations are given for implementing the method described above. We focus
on cases where there are only one or two q functions, i.e., the qα-space (the number of q’s on
which φ depends) is one or two dimensional.

3.1. The 1D case

Spacelike case: let us seek a solution to the EoM involving one spacelike function, say
q1 = ξ(xμ) so that the solution to the EoM �φ(xμ) + V ′(φ) = 0 on the manifold M is given
by φ[ξ(xμ)]. The function ξ must be harmonic, ∇μ∂μξ = � ξ = 0, and must satisfy the
constraint in (2.5) which takes the form

∂μξ∂μξ = −1. (3.1)

Nonlinear harmonic functions ξ will solve this constraint when the coordinates xμ are
constrained, and thereby define a manifold M. For example, consider the spacetime to
be a 4D Minkowski spacetime, gμν(x) = ημν , and choose the harmonic function ξR = xy/R,
where R is an arbitrary real, positive constant. Constraint (3.1) then becomes the condition

x2 + y2 = R2, (3.2)

so that the spatial surface MR is a static cylinder of radius R centered on the z-axis. Then the
solution to the EoM on MR , where ξR = xy/R = R sin θ cos θ (with θ being the ordinary
azimuth angle) is φR(θ) = φR(R sin θ cos θ). Since R is a continuous real parameter, there is a
continuum of surfaces MR (concentric cylinders) on which solutions φR to the EoM exist. The
space is then foliated by a set of concentric cylindrical leaves, with a solution φR(θ) defined
on each leaf labeled by the parameter R. Looking at the leaf solutions as R ranges from zero
to infinity can give a glimpse of qualitative features expected of an exact solution (xμ) to
the EoM � + V ′() = 0 that exists in the bulk of the spacetime, i.e., a solution that satisfies
the EoM throughout the entire spacetime. (Each of these leaf solutions φR generally has a
nonvanishing normal derivative n̂ · ∇φ on the surface MR in addition to tangential derivatives
along the surface. The solution φ(ξR) takes a value of φR(ξR) = φ(ξR)|MR

on the surface
MR where ξR takes a value ξR = (r2/R) sin θ cos θ |r=R = R sin θ cos θ .)

This 1D case is an illustration of a ‘BPS-like’ ansatz, since the simplified equation in (2.4)
is just

−∂2
ξφ(ξ) + V ′(φ) = 0 (3.3)

and can be integrated to give
1√
2
∂ξφ = ±

√
V + c, (3.4)

where c is an integration constant, determined by boundary conditions. The solution is then
given by ∫

dφ√
V + c

= ±
√

2(ξ − ξ0) (3.5)
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which can be determined explicitly, once the form of the potential V (φ) is specified. The
second-order EoM has been transformed into the first-order DE in (3.4), which resembles
the DE for a BPS solution for a static field which is a function of the coordinate ξ . This
BPS-like ansatz can be used to obtain new solutions on various manifolds for different scalar
field theories. Specific examples follow. (We assume a 4D Minkowski spacetime.)

(1) Lorentz boosted kink: for a specific example, consider φ4 theory with potential
V = (φ2 −1)2. Choosing c = 0, (3.5) gives the familiar kink solution φ(ξ) = tanh(

√
2ξ). Let

us now choose a linear harmonic function, ξ = aμxμ. Constraint (3.1) leads to aμaμ = −1,
which does not involve coordinates, but only constrains the constants aμ. Therefore the
solution manifold M is the full spacetime. Note that this choice of ξ includes a description of
a Lorentz boost, as can be seen by choosing a0 = −γ u, a1 = γ, a2 = a3 = 0. The constraint
has as a solution γ = (1 − u2)−1/2, which is the relativistic γ factor associated with a boost
along the x-axis with velocity u. Then ξ = γ (x − ut) gives a Lorentz transform from x to
x ′ = ξ(x, t). The kink solution φ(ξ) therefore can be written as φ(x, t) = tanh[

√
2γ (x−ut)],

a Lorentz boosted kink defined in the whole spacetime. (Linear functions qα in a Minkowski
spacetime generate constraints involving only constants, rather than coordinates. Nonlinear
functions qα are associated with coordinate-constrained manifolds.)

(2) φ4 domain ribbons on static cylinder: as another example, consider φ4 kink solutions
on the surface of the cylinder of radius R in (3.2), generated by the function ξR = xy/R =
(r2/R) sin θ cos θ . On the surface MR this takes the value ξR|M = R sin θ cos θ . The kink
solutions φ(ξ) = ±tanh(

√
2ξ) on the cylinder surface MR are

φR(ξR) = ±tanh(
√

2R sin θ cos θ). (3.6)

These are z independent solutions with zeros located on the ±x- and ±y-axes. The energy
density is

T00 = g00[2V ] = 2

cosh4(
√

2R sin θ cos θ)
. (3.7)

This energy density is maximized at the zeros of the solution φ; we can think of these solutions
as domain ribbons on the cylinder, parallel to the z-axis. For either the (+) or (−) solutions, we
have zeros of φ with positive slopes separated by zeros of φ with negative slopes in between.
This leads us to interpret the solution as a set of four ribbon-like structures consisting of two
ribbons separated by antiribbons in between.

As the parameter R ranges from zero to infinity, we infer from the {φR(ξR)} the existence
of a static bulk solution (x, y) describing perpendicular domain walls centered on the x-
and y-axes, where  = 0, with  entering vacuum states  = ±1 away from the axes at
asymptotic distances from the origin. The set of surface solutions {φR} presumably resemble
intersections of a bulk solution  with the leaves of the {MR} surfaces.

Timelike case: if we instead consider a single timelike generalized coordinate τ(xμ), the
EoM reduces to ∂2

τ φ(τ ) + V ′(φ) = 0 with the harmonic function τ subject to the constraint
∂μτ∂μτ = η00 = 1. The DE for φ(τ) can be solved once the form of the potential (along with
boundary conditions) is specified. The manifold M is generated by the choice of τ and the
constraint that it must satisfy.

K–G field on dynamical 2-branes: as an example, in a 4D Minkowski spacetime, a potential
V = 1

2m2φ2 admits a simple solution φ(τ) = cos mτ . Choosing, for example, a function
τ = xt leads to a constraint x2 − t2 = 1, which defines two parallel planes perpendicular to
the x-axis, located by

x±(t) = ±
√

t2 + 1. (3.8)

5
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The planes approach one another for t < 0, stop and turn around at t = 0, then move away from
each other for t > 0. The value of τ± on M± is τ± = x±t = ±t

√
t2 − 1 = ±x±√

(x±)2 − 1.
The solution φ(x, t) of the EoM can then be written, for instance, as

φ(x, t) = cos mτ = cos(mxt). (3.9)

This function satisfies the EoM
(
∂2
t − ∂2

x

)
φ(x, t) + m2φ(x, t) = 0 when the EoM is evaluated

on the manifold M. The value of the solution φ(x±t) on M± is then given by

φM±(t) = cos mτ± = cos[mt
√

t2 − 1]. (3.10)

Keep in mind that it is not (3.10) that solves the EoM on M, but rather the function in (3.9),
which has nonvanishing normal derivatives (x derivatives). The solution of (3.9) then takes
the value given by (3.10) on the surfaces M± where x = x±.

3.2. The 2D case

1+1 case: consider φ to be a function of just two q’s, say a timelike function q0 = τ(xμ) and
a spacelike function q1 = ξ(xμ), so that φ = φ(τ, ξ). Then the conditions in (2.5) are given
explicitly by the harmonic conditions � τ = � ξ = 0 supplemented by the set of constraints

∂μq0∂μq0 = η00 ∂μτ∂μτ = 1
∂μq0∂μq1 = η01 or ∂μτ∂μξ = 0
∂μq1∂μq1 = η11 ∂μξ∂μξ = −1.

(3.11)

This set of simultaneous constraints can, in general, lead to intersecting surfaces, etc, and the
solution manifold, M, is the common intersection of all the individual constraint manifolds.
The scalar field φ[τ(xμ), ξ(xμ)] is a solution of the simplified EoM(

∂2
τ − ∂2

ξ

)
φ + V ′(φ) = 0 (3.12)

and this solution solves the original EoM ∇μ∂μφ + V ′(φ) = 0 on the solution manifold M.
We give specific examples below. (We assume a flat 4D spacetime.)

(1) Massless scalar field: for a potential V (φ) = 0 the general solution of (3.12) is

φ(τ, ξ) = F(τ + ξ) + G(τ − ξ), (3.13)

where F and G are arbitrary functions of the indicated arguments and τ(xμ) and ξ(xμ) are
functions that satisfy (3.11). An example of such τ and ξ functions is

τ =
√

2t − z, ξ = xy = r2 sin θ cos θ (3.14)

for which M is a static cylinder of unit radius centered on the z-axis. Then on the cylindrical
surface M the solution in (3.13) takes the form

φ(τ, ξ)|M = φM(t, z, θ) = F(
√

2t − z + sin θ cos θ) + G(
√

2t − z − sin θ cos θ). (3.15)

These running waves have the form f (
√

2t − ζ±), with ζ± = z ± sin θ cos θ .
(2) Massive Klein–Gordon field: for a potential V (φ) = 1

2m2φ2 a simple wavelike solution
of (3.12) is

φ = cos(ωτ − kξ), ω2 = k2 + m2. (3.16)

We choose the same manifold functions as before, given in (3.14). The ansatz solution is then

φ = cos[ω(
√

2t − z) − kr2 sin θ cos θ ] (3.17)

and on the cylinder M we set r = 1. We could write this as φM = cos [�t − Kz + δ(θ)], with
� = √

2ω,K = ω, and phase parameter δ(θ) = −k sin θ cos θ . The condition ω2 − k2 = m2

gives

�2 − K2 = ω2 = k2 + m2 ≡ M2. (3.18)

6
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So (3.17) and (3.18) describe a massive plane wave traveling in the z-direction on the cylinder,
with energy �, momentum K and effective mass M =

√
k2 + m2. There is an angular-

dependent phase constant xy = sin θ cos θ which vanishes on the x- and y-axes, but becomes
nonzero elsewhere.

(3) Dynamical φ4 domain ribbons: for a potential V (φ) = (φ2 −1)2 we displayed a static
solution for a kink as φ(ξ) = tanh(

√
2ξ) for the 1D case above. For a simple 2D solution

satisfying (3.12) we take a Lorentz boosted version of φ(ξ), with ξ → γ (ξ − uτ), which we
write as

φ(τ, ξ) = tanh[
√

2γ (ξ − uτ)]. (3.19)

We again choose the functions τ and ξ in (3.14). The ansatz solution on the cylinder then
takes the form

φ(τ, ξ)|M = tanh{
√

2γ [sin θ cos θ − u(
√

2t − z)]}. (3.20)

For u = 0, γ = 1 this describes a pair of domain ribbons, each ribbon separated from the next
by an antiribbon, all lying parallel to the z-axis and centered on the ±x- and ±y-axes, where
the energy density maximizes (at φ = 0, or xy = 0). However, for u �= 0 the zeros of φ are
shifted to positions located by xy = sin θ cos θ = u(

√
2t − z), indicating that the locations

of the ribbon cores on the cylinder wall become z and t dependent dynamical objects. For
instance, at the time t = 0 we have ribbons localized at xy = sin θ cos θ = −uz so that the
ribbons appear to wind around the cylinder in a helical fashion, and these windings move as t
progresses.

2+0 case: now consider a type of solution where φ depends on two spacelike generalized
coordinates q1 = ξ(xμ) and q2 = σ(xμ). The equation of motion in (2.4) becomes(

∂2
ξ + ∂2

σ

)
φ(ξ, σ ) = V ′(φ) (3.21)

with � ξ = � σ = 0. The constraints in (2.5) take the form

∂μq1∂μq1 = η11 ∂μξ∂μξ = −1
∂μq1∂μq2 = η12 or ∂μξ∂μσ = 0
∂μq2∂μq2 = η22 ∂μσ∂μσ = −1.

(3.22)

Laplace’s equation on a cylinder: example constraint functions are

ξ = xy = r2 sin θ cos θ, σ = γ (z − ut), γ = 1/
√

1 − u2 (3.23)

which describe Lorentz boosts in the z-direction on the surface of a cylinder of unit radius,
centered on the z-axis. As an example of a potential, we choose that of a massless scalar field,
V (φ) = 0. In this case a general solution to (3.21) can be written as

φ(ξ, σ ) =
∑

k

Ak e−kξ cos kσ. (3.24)

For the ξ and σ chosen above, the solution on the cylinder becomes

φM =
∑

k

Ak e−k sin θ cos θ cos kγ (z − ut). (3.25)

Each k solution varies in a periodic way around the cylinder in the θ -direction, and is also a
periodic function of z − ut . The values of k and the constants Ak are determined by boundary
conditions.

7
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4. Summary

A method has been presented which allows a class of nontrivial solutions to the equation of
motion for a real scalar field φ(xμ), given by �φ+V ′(φ) = 0, to be obtained from a simplified
equation of motion. This is accomplished by replacing coordinate variables xα on which a
scalar field ϕ depends with generalized coordinates qα(xμ), which are harmonic functions of
coordinates xμ. The function ϕ(xα) satisfies the simpler equation ηαβ∂α∂βϕ(x) + V ′(ϕ) = 0,
with the {xα} being a subset of the full set of coordinates {xμ}. The replacements xα → qα

and ϕ(xα) → φ(qα) result in a function φ(xμ) = φ[qα(xμ)] that solves the original EoM
∇μ∂μφ(x)+V ′(φ) = 0, provided that a set of simple constraints is satisfied. These constraints
give rise to spacetime manifolds M on which the solution φ(xμ) exists. In a Minkowski
spacetime, linear functions qα(xμ) are associated with a manifold which is the full spacetime,
with constraints on the constants, whereas for nonlinear functions qα(xμ) the manifold is a
subspace or hypersurface of the spacetime. Neither the manifolds nor their dynamics depend
upon the form of the scalar field theory. Examples of manifolds and solutions for different
scalar field theories have been provided for the 1D and 2D cases, i.e., where the function φ

depends on only one or two generalized coordinate functions qα . Dynamical manifolds, or a
continuum of static manifolds, can span the bulk of the spacetime, allowing some inference of
the nature of exact bulk solutions (xμ) that solve the EoM throughout the entire spacetime,
without being restricted to any particular manifold.
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